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Abstract. We analyze a connection between the neutralino mass sign, parity and structure of the neutralino–
boson interaction. Correct calculation of spin-dependent and spin-independent contributions to neutralino–
nuclear scattering should consider this connection. A convenient diagonalization procedure, based on the
exponential parametrization of unitary matrix, is suggested.
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1 Introduction

Superpartners of gauge and Higgs fields play an import-
ant role in SUSY phenomenology. In particular, neutralino
dark matter (DM) in the SUSY framework was consid-
ered in detail (see, for example, [1–7]), and these inves-
tigations were adapted to astrophysics. So, an analysis of
the neutralino system and the structure of gauge bosons
interaction with the neutralino and chargino is import-
ant for the DM description and the study of astrophysical
data.
In many phenomenological works both the neutralino

mass spectrum and the structure of states follow from
the formal diagonalization of the neutralino mass form
by an orthogonal (real) matrix [1, 8–11]. Such a pro-
cedure does not consider some important features of
the structure of the Majorana states, related with the
sign of the mass. These features are connected with the
structure of the neutralino–boson interactions which, in
turn, defines the peculiarity of the neutralino–nucleon
scattering.
The most complete and comprehensive analysis of the

neutralino system has been performed in [13–17]. In this
work, the diagonalization of the neutralino mass matrix is
considered in detail in the MSSM and some of its exten-
sions. Special attention was paid to the building of neu-
tralino states with positive masses. However, due to the
complexity of the general diagonalization formalism it is
difficult to trace a link between the sign of mass and the
structure of the neutralino–nucleon interactions.
In this paper, we analyze the features of the neu-

tralino structure and interactions which are directly re-
lated with the sign of mass. We consider the simplest
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case when this connection is transparent and convenient
for illustration. In the second section we compare two
ways of the diagonalization – by orthogonal and unitary
diagonalyzing matrices. These two variants lead to neu-
tralino states with opposite and equal signs of masses.
They are formally equivalent and related by a field redef-
inition (see Sect. 2). But the negative mass of the neu-
tralino (as it occurs for the first case), has to be taken
into consideration in the consequent calculations. Disre-
garding this important feature, it is possible to get an
incorrect conclusion on the spin-dependent (SD) and spin-
independent (SI) contributions into the neutralino–nuclear
cross section [10].
Redefinition of the field reveals a link between the sign

of the mass and transformation properties of Majorana
spinors with respect to inversion (i.e. parity). An analo-
gous connection between the sign of the mass and parity
was revealed for the case of massive Majorana neutrino
in [18, 19]. In Sect. 3, we present the compact Lagrangian
of the boson–neutralino–chargino interaction in terms of a
redefined field, which is convenient for phenomenological
applications.
In the fourth section, we consider the neutralino mass

matrix diagonalization by means of a unitary matrix giv-
ing all positive masses. Thus, the standard calculation
rules can be kept unchanged, and there is no need to
check the sign of the mass or redefine the field. A con-
venient diagonalization procedure based on the exponen-
tial parametrization of the unitary matrix is discussed.
This procedure is formalized in a perturbative calcula-
tion scheme analogous to [12]. However, our scheme needs
a smaller number of input parameters and gives all expres-
sions in a quite compact form, which is useful for calcula-
tions. The method suggested is generalized for the case of
mass matrix with complex parameters (Appendix B).
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2 Neutralino parity and structure
of boson–neutralino interaction

Now we analyze the connection between the signs of the
neutralino mass and the structures of the neutralino–boson
interaction when MZ/Mk → 0 and Mk is M1,M2 or µ.
In this limit, the analysis is simplified considerably, but
the results can be used in the general case too. This limit
is approximately realized in split SUSY scenarios [3] and
strictly takes place at high temperatures T � EEW, when
the Higgs condensate is melted (the high symmetry phase).
For completeness, we give the well-known minimal formal-
ism that we need in the following analysis.
If the mixing of gauge and Higgs fermions is neglected,

the mass term of higgsino-like Majorana fields has the
Dirac form [20]:

Mh =
1

2
µ
(
H̄01RH

0
2L+ H̄

0
2RH

0
1L

)
+h.c. (1)

This form can be represented by a (2× 2)-mass matrix
which is known as the specific matrix with zero trace:

M2 =

(
0 µ
µ 0

)
. (2)

There are two ways to diagonalize this matrix. The formal
procedure using the orthogonal matrixO2 leads to a spec-
trum with opposite signs:

OT2M2O2 =

(
µ 0
0 −µ

)
, O2 =

1
√
2

(
1 1
1 −1

)
,

ma = (µ,−µ) , (3)

where Tr{OT2M2O2}= Tr{M2}= 0 (trace conservation).
In this case, one of the Majorana fields has a negative mass,
regardless of the sign of µ. The matrixM2 can also be diag-
onalized by the unitary complex matrixU2, giving masses
with the same sign:

UT2M2U2 =

(
µ 0
0 µ

)
, U2 =

1
√
2

(
1 i
1 −i

)
,

ma = (µ, µ) . (4)

The diagonalization (4) is equivalent to the procedure (3)
with the redefinition χ→ iγ5χ of the non-chiral (full)
field with m =−µ. The last transformation is equivalent
to χR,L→±iχR,L for the chiral components. Note that
there is an infinite set of unitary matrices Uφ =U2 ·Oφ
which diagonalize the mass matrixM2 (see also [15], Ap-
pendix A.2):

Uφ =
1
√
2

(
eiφ ieiφ

e−iφ −ie−iφ

)
, Oφ =

(
cosφ − sinφ
sinφ cosφ

)
.

(5)

The additional O2-symmetry (see Appendix B) leads to
a free parameter arising in the general case.
Dealing with the spinor field we should take into ac-

count the sign of its mass in the propagator and polar-
ization matrix or redefine the field with a negative mass.

As a rule this feature is not considered in phenomeno-
logical applications (see, for example, [8–11]). From the
redefinition χ′ = iγ5χ, it follows that the transformation
(relative to inversion) properties of Majorana fields hav-
ing opposite mass signs are different. As a result, we
have one usual Majorana field and one pseudo-Majorana
field.
The gaugino mass subform is of the standard Majo-

rana type [20] and has no specific features. The signs of the
masses for χ1 and χ2 are defined by the signs of M1 and
M2 in the case of small mixing. They can be made pos-
itive by a redefinition. Note that the redefinition proced-
ure always influences the mixing terms of the mass matrix
and should be taken into account in the general case (see
Sect. 4).
Now we consider the connection between the structure

of the boson–neutralino interaction and the relative sign of
the neutralino masses. For simplicity, we show this connec-
tion in the pure higgsino approximation. The contribution
of terms caused by mixing is considered in the next sec-
tion. We here present a short comparative analysis of the
calculation rules in two cases: when the masses of χ3 and
χ4 have different signs (diagonalization (3)) and when they
have the same signs (diagonalization (4)). The initial La-
grangian is

Lint =
1

2
gZZµ

(
H̄01Lγ

µH01L+ H̄
0
2Rγ

µH02R
)
, (6)

where gZ = g2/ cos θW. The diagonalizations (3) and (4)
lead to the following forms of neutralino–boson interac-
tions, respectively:

(1) Lint =−
1

2
gZZµχ̄3γ

µγ5χ
′
4 ;

(2) Lint =
i

2
gZZµχ̄3γ

µχ4 . (7)

In (7) the first case with opposite signs (µ,−µ) can be
transformed into the second case with the same signs (µ, µ)
by the redefinition iγ5χ

′
4 = χ4. Here we show that both La-

grangians in (7) lead to the same result without any field
redefinition if the negative sign of χ′4 mass is considered in
the calculations. In other words, both structures in (7) lead
to the parity-conserving vector interaction which gives the
spin-independent contribution to the neutralino–nucleon
scattering [21].
Let us consider, for example, the process of the scat-

tering χ3q→ χ4q with t-channel exchange of a Z-boson
(t2�M2Z). In both cases, the amplitudes of this process
are

(1) M1 ∼ χ̄
′+
4 (p2)γ

µγ5χ
−
3 (p1) · q̄

+(k2)γµ(cq−γ5)q
−(k1) ,

(2) M2 ∼ χ̄
+
4 (p2)γ

µχ−3 (p1) · q̄
+(k2)γµ(cq−γ5)q

−(k1) .
(8)

Formally, the amplitudes M1 and M2 have a different
structure. Therfore, one can draw a wrong conclusion
about the contributions to the spin-dependent and spin-
independent parts of the cross section, if the negative sign
of χ′4 mass has not been taken into account. However, tak-
ing into account the negative sign of χ′4 in the polarization
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matrix allows one to get the same result for both cases.
If χ is in an initial or final state, the polarization matrix
of the field χ in M+M is defined by (for positive mass
mχ = µ > 0)

∑

σ

χ∓σ (p)χ̄
±
σ (p) =

1

2p0
(p̂±µ) , (9)

or (for negative massmχ′ =−µ)

∑

σ

χ′∓σ (p)χ̄
′±
σ (p) =

1

2p0
(p̂∓µ) . (10)

With the help of (10), we get

M+
1M1 ∼ Tr

{
(p̂2−µ)γ

µγ5(p̂1+µ)γ
νγ5
}

=Tr
{
(p̂2+µ)γ

µ(p̂1+µ)γ
ν
}
. (11)

One can get the same expression for M+
2M2 using the

standard definition (9) of the polarization matrix. This
feature should be included in an analysis of neutralino–
nucleon scattering. From the interaction Lagrangian only,
without consideration of the mass signs, we cannot draw
any valuable conclusions on the SD or SI contributions. In
particular, the bilinear structures χ̄3γµχ4 and χ̄3γ

µγ5χ
′
4

are vectors, while χ̄3γµχ
′
4 and χ̄3γ

µγ5χ4 are axial vectors.
Analogously, χ̄3χ

′
4 and χ̄3γ5χ4 are pseudoscalars, while

χ̄3γ5χ
′
4 and χ̄3χ4 are scalars. Thus, the analysis of the

neutralino–nucleon interaction has to take into account
neutralino transformation properties. As a rule, in the
bulk of papers this feature has not been considered explic-
itly and mistaken conclusions can be obtained in calcu-
lations of the SD and SI contribution to the neutralino–
nucleon interaction. In particular, for the current structure
χ̄iγ

µγ5χkZµ it is possible to obtain SD or SI neutralino–
nucleon cross sections depending on the neutralino relative
parity. For instance, in [10, 22, 23] the same current struc-
ture was considered without any comments on this import-
ant peculiarity. From our analysis, it follows that in the
case discussed, the neutralino–boson interaction gives the
main contribution to the spin-independent part of the cross
section [21].
An analogous feature is in order when χ′4 is in an in-

termediate state, for example, in the process χ3Z→ χ′4→
χ3Z. The amplitude of the process is

M1 ∼ χ̄
+
3 (p2)γ

µγ5(q̂−µ)γ
νγ5χ

−
3 (p1)e

Z
µ e
Z
ν

= χ̄+3 (p2)γ
µ(q̂+mχ)γ

νχ−3 (p1)e
Z
µ e
Z
ν . (12)

In (12) we use the propagator∼ (q̂−µ) for the field χ′4 with
negative mass mχ′ = −µ, whereas the standard propaga-
tor is ∼ (q̂+µ). So, the mass sign being taken in account
leads to the same result for the amplitudesM1 andM2,
whereM2 describes the same process with redefined χ4 in
an intermediate state.

3 Gauge boson–neutralino–chargino
interactions

In this section, we give compact expressions for the La-
grangian of gauge boson–neutralino–chargino interactions
in the case of small mixing. These expressions are conve-
nient for calculations in cosmology. This Lagrangian fol-
lows from (A.14)–(A.16) as a result of the shift

Lint =
i

2
g2εabcW̄

aγµW cW bµ−
1

2
g1H̄

−
1 γ
µH−1LBµ

+
1

2
g1H̄

+
2 γ
µH+2LBµ

+
1
√
2
g2W

+
µ

(
H̄01γ

µH−1L+ H̄
+
2 γ
µH02L

)

+
1
√
2
g2W

−
µ

(
H̄−1 γµH

0
1L+ H̄

0
2γ
µH+2L

)

+
1

2
g2W

3
µ

(
−H̄−1 γ

µH−1L+ H̄
+
2 γ
µH+2L

+ H̄01γ
µH01L− H̄

0
2γ
µH02L

)

−
1

2
g1H̄

0
1γ
µH01LBµ+

1

2
g1H̄

0
2γ
µH02LBµ . (13)

Let us consider the case MZ � µ,M1,2, which can be
used in split SUSY models [2–4, 10]. The physical states of
the neutralino in the zeroth order of the mixing were de-
fined in Sect. 2, and the chargino states in Appendix B:

χ1 =W
3 , χ2 =B , χ3 =

(
H01 +H

0
2

)
/
√
2 ,

χ4 = iγ5
(
H01 −H

0
2

)
/
√
2 ;

H̃ =−iγ5(H
−
1L+H

+
2R) , W̃ = (W1+ iW2)/

√
2 .
(14)

In (14) we do not use charge sign notation for the Dirac
fields H̃ and W̃ (in contrast toW±µ ) in analogy to the stan-

dard model notation. From the structure of H̃ in (14), it
follows that the components H−1L and H

+
2R correspond to

particle and anti-particle parts in a Weyl basis. Using the
definitions (14) we represent Lint in the form

Lint = g2W
+
µ

(
χ̄1γ

µW̃ −
i

2
χ̄3γ

µH̃−
1

2
χ̄4γ

µH̃

)

+ g2W
−
µ

(
¯̃
Wγµχ1+

i

2
¯̃
Hγµχ3−

1

2
¯̃
Hγµχ4

)

− g2 cos θWZµ
¯̃
WγµW̃ −

g2

2 cos θW
cos 2θWZµ

¯̃
HγµH̃

+
ig2

2 cos θW
Zµχ̄3γ

µχ4− eAµ
¯̃
WγµW̃ − eAµ

¯̃
HγµH̃ .

(15)

The first order corrections to the Zχiχk interaction
caused by the mixing (see Appendix B) are

L
(1)
mix =

g2

2 cos θW
Zµ

(
−
im2
M1−µ

χ̄1γ
µχ3+

im4
M2−µ

χ̄2γ
µχ3

−
m1

M1+µ
χ̄1γ

µγ5χ4+
m3

M2+µ
χ̄2γ

µγ5χ4

)
, (16)
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where the mk are defined by (22) in the next section.
From (16), one can see that the interactions of χ3 and
χ4 with χ1,2 have a different structure. This effect is di-
rectly connected with different signs of the masses of the
non-redefined fields. Note also that the bino-like neutralino
χ2 ≈ B does not interact with gauge bosons in the zero
mixing approximation, but it interacts with the scalar
Higgs field and χ3,4.
In the pure higgsino limit, χ3 and χ4 constitute the neu-

tral Dirac field H̃0 = (χ3+ iχ4)/
√
2 and the part of (15)

can be represented in the form (here we omit the heavy
states W̃ and χ2)

LDint =−
ig2
2
W+µ
¯̃
H
0
γµH̃+

ig2
2
W−µ
¯̃
HγµH̃0

+
g2

2 cos θW
Zµ
¯̃
H
0
γµH̃

0

−
g2

2 cos θW
cos 2θWZµ

¯̃
HγµH̃− eAµ

¯̃
HγµH̃ .

(17)

The Dirac representation (17) of the boson–neutralino–
chargino interactions involving a small mixing of the Higgs
fermion with the gauge ones is formal (unphysical) but is
convenient for our calculations. In this case, we avoid some
complications of the Feynman rules, caused by the Majo-
rana nature of χ3 and χ4 [24–26]. By direct calculation we
have checked that both ways lead to the same results for
the annihilation and co-annihilation cross sections [27].

4 Diagonalization of the neutralino mass
matrix by unitary matrix with exponential
parametrization

In this section, we consider diagonalization of the 4× 4
mass matrix with real parameters µ,M1,M2. Generaliza-
tion of the approach for a matrix with complex parameters
is considered in Appendix B. As follows from Sect. 2, the
sign µ is not essential, and M1,2 can be made positive by
a redefinition of the gauge fermion. The neutral fermion
mass form follows from the SUSY Lagrangian ((A.15)
and (A.16)) after the shift

Lm =−
1

2
(φ̄R)

TM0φL+h.c. , (18)

where (φ)T = (B,W 3,H01 ,H
0
2 ) and

M0 =

⎛

⎜
⎝

M1 0 −iMZsθcβ iMZsθsβ
0 M2 iMZcθcβ −iMZcθsβ

−iMZsθcβ iMZcθcβ 0 µ
iMZsθsβ −iMZcθsβ µ 0

⎞

⎟
⎠ ,

(19)

where sθ = sin θ and cβ = cosβ. The matrix (19) differs
from the commonly used one by the presence of the imag-
inary unit in the mixing terms. One can go to a real tra-
ditional matrix M ′0 by a redefinition H

′
a = iγ5Ha, where

a = 1, 2. As a result we get the standard matrix follow-
ing from (19) under the formal transition iMZ →MZ and
µ→−µ. However, implying our diagonalization procedure
there is no need to do this transformation [23].
It is convenient to analyze the diagonalization of the

matrix (19) with the help of the intermediate transform-
ation

MI =U
T
I M0UI ; UI =

(
1 0
0 U2

)
. (20)

Here 1 and 0 are the identity and zero (2×2)-matrices, and
U2 is defined by (4) in the pure higgsino limit. Then the
intermediate mass matrix has the form

MI =

⎛

⎜
⎝

M1 0 −im1 m2
0 M2 im3 −m4
−im1 im3 µ 0
m2 −m4 0 µ

⎞

⎟
⎠ , (21)

where

m1 =MZ sin θW(cosβ− sinβ)/
√
2 ,

m2 =MZ sin θW(cosβ+sinβ)/
√
2 ,

m3 =MZ cos θW(cos β− sinβ)/
√
2 ,

m4 =MZ cos θW(cos β+sinβ)/
√
2 . (22)

Intermediate fields are defined by φI = UIφ; that is,
(φI)

T = (B,W 3, χI3, χ
I
4), where χ

I
3 and χ

I
4 are defined

by (7). The use of the intermediate mass matrix provides
the positivity of the higgsino-like neutralino masses and
leads to the “quasidiagonal” structure of the matrix in the
case of small mixing.
The matrix (21) is symmetric and complex, but it is

not Hermitian. The spectrum ofMI is real and has a sim-
ple form. However, it is not a mass spectrum of the neu-
tralino, because the diagonalization of the neutralino mass
matrix UTI MIUI = diag(mk) differs from the one defined
by U+MIU= diag(λk). In the last case, U is built of the
eigenvectors of MI and the λk are the eigenvalues of MI.
According to Theorem 4.4.4 (Takagi expansion) from [28],
any complex symmetric matrix can be diagonalized by the
unitary matrixU:

U+MU∗ = diag(mk) , mk > 0 , (23)

where U is built from eigenvectors of the matrix A =
MM∗ with the spectrum {m2k}, i.e. U

+AU = diag(m2k).
Consistency of the last relation and (23) is evident from the
equality

U+MU∗(U∗)−1M∗U= diag(m2k) , m
∗
k =mk . (24)

The method based on the Takagi theorem was con-
sidered in [12, 15, 29, 30], where the standard way of the
determination of the spectrum is given. However, there
is no need to solve this complicated problem in the case
considered. Here we show that the spectrum of matrix
A =MIM

+
I coincides with the squared spectrum of the
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traditional real mass matrixM′0. The spectrum of the ma-
trix A =MIM

+
I (MI is defined by (21)) follows from the

solution of the characteristic equation det(A−λ ·1) = 0,

λ4−aλ3+ bλ2− cλ+d= 0 . (25)

The coefficients a, b, c, and d in (25) are expressed in terms
of the matrix elements ofM0 as follows:

a=M21 +M
2
2 +2µ

2+2M2Z;

b=M21M
2
2 +2M

2
1

(
µ2+M2Z cos

2 θW
)

+2M22
(
µ2+M2Z sin

2 θW
)

+2M2Zµ sin 2β
(
M1 sin

2 θW+M2 cos
2 θW
)

+
(
µ2+M2Z

)2
;

c= 2µ2M21M
2
2 +M

2
1

[(
µ2+M2Z cos

2 θW
)2

+2M2M
2
Zµ cos

2 θW sin 2β
]

+M22
[(
µ2+M2Z sin

2 θW
)2
+2M1M

2
Zµ sin

2 θW sin 2β
]

+
1

2
M1M2M

4
Z sin

2 2θW

+2M2Zµ
3 sin 2β

(
M1 sin

2 θW+M2 cos
2 θW
)

+µ2M4Z sin
2 2β ;

d= µ4M21M
2
2 +M

2
1µ
2M2Z

(
2µM2+M

2
Z cos

2 θW sin 2β
)

× cos2 θW sin 2β

+M22µ
2M2Z

(
2µM1+M

2
Z sin

2 θW sin 2β
)
sin2 θW sin 2β

+
1

2
M1M2µ

2M4Z sin
2 2θW sin

2 2β . (26)

Analogous expressions are given in [12], where the algo-
rithm of the definition of the spectrum λk is considered. In
the general case, we can get exact expressions for the roots
λk of (25) in terms of its general algebraic solutions. It is
difficult to analyze and compare such expressions, but we
can show that the roots of (25) are λk =m

2
k, where mk is

the conventional neutralino spectrum. To show this, let us
write the characteristic equation, det(M′0− l ·1) = 0, in the
form (M′0 is the standard real mass matrix [30, 32, 33])

(M1− l)(M2− l)(l
2−µ2)

+M2Z(l+µ sin2β)
(
M1 cos

2 θW+M2 sin
2 θW− l

)
= 0 .
(27)

Then we arrange the even and odd degrees of l on the left
and right hand sides of this equation separately. Squar-
ing the equation and changing l2k → λk, we get (25) with
coefficients (26). Moreover, by direct calculation we have
checked that the mass spectrum appearing as a result of
the diagonalization

U+MIU
∗ = diag(mk) (28)

is entirely positive (see Appendix B).
With the help of the Takagi theorem it is possible to

illustrate the correct construction of the positive mass
spectrum. However, the above discussed method is not
convenient for calculations and can be used as the diago-
nalizability proof only: there is a unitary matrix with the

property (23) or (28). The use of MI gives a convenient
tool for the calculation of the spectrum and states when
M1,M2, µ and their differences are much greater thanMZ .
The hierarchy of M1, M2 and µ is arbitrary, i.e. one can
apply the method suggested to the various scenarios of the
neutralino DM. In this case, the diagonalyzing matrix is
quasidiagonal, i.e. |Ukk| ≈ 1 and |Uik| � 1, i �= k. Then we
represent this matrix in the exponential form which con-
tains six angles and six phases as input parameters. A simi-
lar approach was considered in the general case in [12],
where six angle and ten phase parameters were applied.
Here we show that in the case of the mass matrix (21) it is
possible to use six phases only (see Appendix B):

U=

⎛

⎜
⎜
⎝

a1 δ1e
−iφ1 δ2e

−iφ2 δ3e
−iφ3

r1e
iα1 a2 δ4e

−iφ4 δ5e
−iφ5

r2e
iα2 r4e

iα4 a3 δ6e
−iφ6

r3e
iα3 r5e

iα5 r6e
iα6 a4

⎞

⎟
⎟
⎠ , (29)

where δk and φk are input angle and phase parameters.
The values aβ , ri and αk are some functions of the input
parameters which are defined by the unitary conditions
(U+U)ik = δik. In our case, |δk| � 1 and functions aβ, ri
and αk are easily determined by successive approximations
(Appendix B). Apparently, the diagonalization of the real
matrix demands the angle parameters only. Having used
the diagonalization conditions

UTI MIUI =Md ≡ diag(m1,m2,m3,m4) (30)

the input parameters δi and φk can be determined from the
six independent equations (Md)ik = 0, i > k. So, there are
six conditions for the real and six ones for the imaginary
parts of matrix elements. Then the masses mα appear as
functions of the defined input parameters. As is shown in
Appendix B, the perturbative calculation scheme can eas-
ily be formalized.
The above discussed method of diagonalization is ap-

plied to the case of a mass matrix with complex parameters
M1e

iψ1 , M2e
iψ2 and µeiψµ (see Appendix B). In this case,

we have to generalize (29) introducing additional phase
parameters according to ak → akeiξk . Thus, we have the
same quantity of parameters as in [12]. The functions aβ , rk
and αk are determined in terms of the input parameters
δk, φk and ξβ using the unitary condition U

+U= 1. The
input parameters are determined in terms of the mass
matrix elements if we use the diagonalization conditions
(UTMU)ik = 0, i �= k and Im(UTMU)ii = 0. Note that in
this case the perturbative calculation scheme (as for the
real mass matrix) is in order also. However, the expressions
are more complicated and bulky, so we give the results in
the first approximation only (Appendix B).
Here we represent the mass spectrum and parameters of

the matrix U defined by (29), up to terms ∼m2Z/M
2
a , a=

1, 2 (Appendix B). The neutralino masses are

mχ1 =M1+
M2Z sin

2 θW

M21 −µ
2
(M1+µ sin 2β) ,

mχ2 =M2+
M2Z cos

2 θW

M22 −µ
2
(M2+µ sin 2β) ,
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mχ3 = µ+
M2Z(1− sin 2β)

2(M1+µ)(M2+µ)

×
(
M1 cos

2 θW+M2 sin
2 θW+µ

)
,

mχ4 = µ−
M2Z(1+sin 2β)

2(M1−µ)(M2−µ)

×
(
M1 cos

2 θW+M2 sin
2 θW−µ

)
. (31)

From (31) one can see that mχ3 and mχ4 have the same
sign. The validity of the expressions (31) does not depend
on the hierarchy ofMa and µ. So one can use (31) in various
SUSY scenarios.
Another feature of the diagonalization is the presence

of a free parameter in the structure of neutralino states
(Appendix B). Evidently, this free parameter is a remain-
der of O2-symmetry in the pure higgsino limit, and it does
not enter into expressions for the masses (the last asser-
tion is checked by direct calculation in the second order
approximation).
The structure of the neutralino chiral fields follows from

the transformations

φL =UχL , φR = (φL)
C =U∗χR ,

χL =U
−1φL =U

+φL , χR = (χL)
C =UTφR , (32)

whereU=U2 ·UI and (φ)T = (B,W 3,H01 ,H
0
2 ). With the

help of (32) for the non-chiral neutralino field χ= χL+χR,
we get

φ= (ReU− iγ5 ImU)χ , χ=
(
ReUT+ iγ5 ImU

T
)
φ .

(33)

In the first order of mixing (see Appendix B) the structure
of the neutralino fields is defined by the following expres-
sions

χ1 ≈B+
i
√
2

(
m1

M1+µ
+
m2

M1−µ

)
γ5H

0
1

+
i
√
2

(
m1

M1+µ
−
m2

M1−µ

)
γ5H

0
2 ,

χ2 ≈W
3−

i
√
2

(
m3

M2+µ
+
m4

M2−µ

)
γ5H

0
1

−
i
√
2

(
m3

M2+µ
−
m4

M2−µ

)
γ5H

0
2 ,

χ3 ≈
im1
M1+µ

γ5B−
im3
M2+µ

W 3+
1
√
2
H01 +

1
√
2
H02 ,

χ4 ≈−
m2

M1−µ
B+

m4

M2−µ
W 3+

i
√
2
γ5H

0
1 −

i
√
2
γ5H

0
2 .

(34)

Thus, the imaginary part of the transformations con-
tains the factor corresponding to the redefinition χ′ = iγ5χ
in the minimal diagonalization procedure. It was checked
by direct calculation up to the second order that the diag-
onalization of the real matrix M′I with redefinition of the
field with negative mass gives the same results when the
free parameter is equal to zero (see Appendix B).
It is known that in a wide class of SUSY scenarios the

values ofM1,2 and/or µ are of the order of TeV and higher,

so the coefficients in (34) are of the order of 10−1 or less.
Thus, the mixing terms give a contribution to the physical
values ∼ 1%, so the expressions (34) can be used in practi-
cal calculations with a good accuracy.

5 Conclusion

It is known that the diagonalization of the neutralino mass
form by the orthogonal real matrix leads to the neutralino
mass spectrum with one negative mass. This has to be
taken into account in calculation rules or by a redefinition
of the field with negative mass. An alternative way is the
diagonalization by a unitary complex matrix which leads
to the mass spectrum with all positive masses. Formally,
both the ways are equivalent, but the second one is more
convenient, because it does not demand any modification
of the standard calculation rules.
In this work, we have considered the connection be-

tween the mass sign, the relative parity of the neutralino
states and the structure of the boson–neutralino interac-
tion. These features should be considered in the evalua-
tion of the SI and SD contribution to neutralino–nucleon
scattering. The suggested approach directly illustrates the
existence of one free parameter, generated by the specific
symmetry of the µ-term. When this parameter is equal
to zero, both approaches give the same results. This was
strictly shown in our work for the mass spectrum and
states up to the second approximation.
We suggest a simple and convenient way of diagonaliza-

tion by a unitary matrix with the exponential parametriza-
tion. Having used this matrix, we get transparent per-
turbative formalization of the diagonalization procedure.
This method gives simple expressions, illustrating the neu-
tralino states structure and the form of the gauge boson–
neutralino interaction. These expressions can be used in
most of the SUSY scenarios with the accuracy ∼ 1% or
higher.

Acknowledgements. We would like to thank O. Teryaev for

many discussions and much correspondence. This work was
supported in part by RFBR Grant Nos. 06-02-16215 and 07-02-
91557.

Appendix A

To explicitly show the appearance of the imaginary unit
in the neutralino mass matrix and for consistency we give
here the minimal part of the SUSY Lagrangian and briefly
describe the transformation of the initial SUSY expres-
sions to the ones in terms of four-dimensional fields. All
definitions and calculations are in the notation of [31–
33]. We consider the electro-weak part of the MSSM La-
grangian

L= LG+LH+LPh . (A.1)
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In (A.1), the gauge term LG has the standard form

LG =
1

4

{(
WαWα

)
θθ
+
(
W̄α̇W̄

α̇
)
θ̄θ̄

+
(
Wαb W

b
α

)
θθ
+
(
W̄ bα̇W̄

α̇
b

)
θ̄θ̄

}
, (A.2)

whereWα andWα̇ are U(1) gauge superfields andW
b
α and

W bα̇ are SU(2) gauge superfields. The Higgs term contains
two chiral superfields with hypercharges Y1,2 =±1,

LH = {H
+
1 exp (g1G1− g2G2)H1

+H+2 exp (−g1G1− g2G2)H2}θθθ̄θ̄ . (A.3)

The phenomenological part contains the so-called µ-term
and gauge soft mass terms:

LPh = µ[(H1εH2)θθ+(H
+
1 εH

+
2 )θ̄θ̄]

−
1

2
M1(bb+ b̄b̄)−

1

2
M2(ωaωa+ ω̄aω̄a) ,

(A.4)

where ε= iτ2. To define the notation of the components we
also present the expressions for the gauge superfields G1
and G2 in Wess–Zumino gauge:

G1 = θσ
µθ̄ ·Bµ+ iθθ · θ̄b̄− iθ̄θ̄ · θb+

1

2
θθ · θ̄θ̄ ·D1 ,

Ga2 = θσ
µθ̄ ·W aµ + iθθ · θ̄ω̄

a− iθ̄θ̄ · θωa+
1

2
θθ · θ̄θ̄ ·Da2 ,

Wα =−
1

4
D̄D̄DαG , W̄α̇ =−

1

4
DDD̄α̇G . (A.5)

The Higgs chiral superfields are

H1 = hu+
√
2θh1+ θθ ·F1 , H2 = hd+

√
2θh2+ θθ ·F2 .

(A.6)

Thus, the particle content is

G1 = (Bµ, b) , Ga2 = (W
a
µ , ω

a) ,

H1 = (hu, h1) , H2 = (hd, h2) , (A.7)

where

hu =

(
h0u
h−u

)
, h1 =

(
h01
h−1

)
, hd =

(
h+d
h0d

)
, h2 =

(
h+2
h02

)
.

(A.8)

In (A.7) and (A.8) Bµ,W
a
µ , hu, hd are boson fields and

b, ωa, h1, h2 are two-component fermions.
Using the standard method from (A.1)–(A.4) we get

Lagrangians in terms of two-component fermions. The
gauge field Lagrangian is

LG =−
1

4
BµνBµν + ib̄σ̄

µ∂µb+
1

2
D21−

1

4
Wµνa W

a
µν

+ iωaσµ(∂µω̄a+ g2εabcω̄cW
b
µ)+

1

2
Da2D2a ,

(A.9)

where Bµν = ∂µBν −∂νBµ and W aµν = ∂µW
a
ν −∂νW

a
µ +

g2ε
abcWµbWνc. The Higgs field Lagrangian is

LH = ih̄1σ̄
µ∂µh1+ ih̄2σ̄

µ∂µh2

−
1

2
g1Bµh̄1σ̄

µh1+
1

2
g1Bµh̄2σ̄

µh2

+
1

2
g2W

a
µ h̄1σ̄

µτah1+
1

2
g2W

a
µ h̄2σ̄

µτah2

+
ig1√
2
(h+u bh1− h̄1b̄hu)−

ig1√
2
(h+d bh2− h̄2b̄hd)

−
ig2√
2
(h+u ωh1− h̄1ω̄hu)−

ig2√
2
(h+d ωh2− h̄2ω̄hd) .

(A.10)

The phenomenological Lagrangian is

LPh =−µ(h1εh2+ h̄1εh̄2)−
1

2
M1(bb+ b̄b̄)

−
1

2
M2(ωaω2+ ω̄ω̄) . (A.11)

In (A.9)–(A.11) all fermion fields are two-component
spinors. The transition to four-component Mayorana spin-
ors in a Weyl basis is defined by the following relations:

χk =

(
φk

φ̄k

)
, φk =

(
b, ωa, h1, h2

)
;

χkL =

(
φk

0

)
, χkR =

(
0

φ̄k

)
, χCL = χR =Rχ ;

L=
1

2
(1−γ5) =

(
1 0
0 0

)
, R=

1

2
(1+γ5) =

(
0 0
0 1

)
.

(A.12)

With (A.12) we get

ib̄σ̄µ∂µb=
i

2
B̄γµ∂µB ,

bb+ b̄̄b= B̄B , B =

(
b

b̄

)
;

iωaσµ∂µω̄a =
1

2
W̄ aγµ∂µW

a+Div(W ) ,

ωaω
a+ ω̄aω̄

a = W̄aW
a , W a =

(
ωa

ω̄a

)
;

ig2ω
aσµεabcω̄cW

b
µ =
i

2
g2W̄

aγµW cεabcW
b
µ ;

ih̄1σ̄
µ∂µh1 =

i

2
H̄1γ

µ∂µH1 ,

h̄1σ̄
µh1 = H̄1γ

µH1L , h̄2σ̄
µh2 = H̄2γ

µH2L ;

h̄1σ̄
µτah1 = H̄1γ

µτaH1L ,

h̄2σ̄
µτah2 = H̄2γ

µτaH2L, Ha =

(
ha

h̄a

)
;

h+u bh1− h̄1b̄hu = h
+
u B̄H1L− H̄1LBhu ,

h+d bh2− h̄2b̄hd = h
+
d B̄H2L− H̄2LBhd ;

h+u ωh1− h̄1ω̄hu = h
+
u W̄H1L− H̄1LWhu ,

h+d ωh2− h̄2ω̄hd = h
+
d W̄H2L− H̄2LWhd ;

h1εh2+ h̄1εh̄2 = H̄1RεH2L+ H̄1LεH2R . (A.13)
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From (A.9)–(A.11) with the help of (A.12) and (A.13) we
obtain Lagrangians in terms of four-component spinors.
The gauge field Lagrangian is

LG =−
1

4
BµνBµν +

i

2
B̄γµ∂µB+

1

2
D21−

1

4
Wµνa W

a
µν

+
i

2
W̄ aγµ

(
∂µWa+ g2εabcW

cW bµ
)
+
1

2
Da2D2a .

(A.14)

The Higgs fermion field Lagrangian is

LH =
i

2
H̄1γ

µ
(
∂µH1+ ig1BµH1L− ig2W

a
µ τaH1L

)

+
i

2
H̄2γ

µ
(
∂µH2− ig1BµH2L− ig2W

a
µ τaH2L

)

+
ig1√
2
(h+u B̄H1L− H̄1LBhu)

−
ig1√
2
(h+d B̄H2L− H̄2LBhd)

−
ig2√
2
(h+u W̄H1L− H̄1LWhu)

−
ıg2√
2
(h+d W̄H2L− H̄2LWhd) . (A.15)

The phenomenological Lagrangian is

LPh =−
1

2
M1B̄B−

1

2
M2W̄aW

a

−µ(H̄1RεH2L+ H̄1LεH2R). (A.16)

Appendix B

Here we consider a simple and easily formalized method of
the complex mass form diagonalization:

(
φ̄IR
)T
MIφ

I
L+h.c. = (χ̄R)

TUTI MIUIχL+h.c. =miχ̄iχi .
(B.1)

In (B.1)MI is a symmetric complex matrix, φ
I
R,L are the

chiral components of the initial Majorana spinor fields aris-
ing after intermediate diagonalization (20), and χ are the
final Majorana fields (neutralino):

(φI)T =
(
B,W 3, φI3, φ

I
4

)
, χT = (χ1, χ2, χ3, χ4) . (B.2)

The intermediate states φI3 and φ
I
4 are defined by (7). We

suggest straightforward diagonalization of the form (B.1)
by the unitary matrix in the exponential parametriza-
tion. In the general case, the unitary matrix U(n×n) has
2n2−n2 = n2 parameters, where n2 unitary conditions are
taken into account. For n= 4 we have 16 input parameters,
six angles and ten phases [12]. However, in the case of a
symmetric mass matrix with realM1,2 and µ, this number
of parameters is excessive, so we suggest a unitary ma-
trix with six angle and six phase input parameters. These
12 parameters can be defined from 12 independent condi-
tions following from the symmetric matrix diagonalization

(UTI MIUI)ik = 0, i > k (or i < k). It is convenient for the
analysis to useUI in the exponential form [34, 35]:

UI =

⎛

⎜⎜
⎝

a1 δ1e
−iφ1 δ2e

−iφ2 δ3e
−iφ3

r1e
iα1 a2 δ4e

−iφ4 δ5e
−iφ5

r2e
iα2 r4e

iα4 a3 δ6e
−iφ6

r3e
iα3 r5e

iα5 r6e
iα6 a4

⎞

⎟⎟
⎠ . (B.3)

In (B.3) δ1–δ6 and φ1–φ6 are the angle and phase param-
eters, respectively. The quantities δk and φk are the input
parameters, while aβ and rk, αk are some functions of the
input parameters which follow from the unitary condition
U+U= 1:

a1 =
(
1− δ21− δ

2
2− δ

2
3

)1/2
, a2 =

(
1− δ24− δ

2
5− r

2
1

)1/2
,

a3 =
(
1− δ26− r

2
2− r

2
4

)1/2
, a4 =

(
1− r23− r

2
5− r

2
6

)1/2
,

a1r1e
iα1 +a2δ1e

iφ1+ δ2δ4e
i(φ2−φ4)+ δ3δ5e

i(φ3−φ5) = 0 ,

a1r2e
iα2 + δ1r4e

i(α4+φ1)+a3δ2e
iφ2+ δ3δ6e

i(φ3−φ6) = 0 ,

a1r3e
iα3 + δ1r5e

i(α5+φ1)+ δ2r6e
i(φ2+α6)+a4δ3e

iφ3 = 0 ,

r1r3e
i(α3−α1)+a2r5e

iα5+ δ4r6e
i(φ4+α6)+a4δ5e

iφ5 = 0 ,

r1r2e
i(α2−α1)+a2r4e

iα4+a3δ4e
iφ4 + δ5δ6e

i(φ5−φ6) = 0 ,

r2r3e
i(α3−α2)+ r4r5e

i(α5−α4)+a3r6e
iα6+a4δ6e

iφ6 = 0 .
(B.4)

The Ansatz (B.3) is convenient for approximate calcula-
tions in the case of a quasidiagonal mass matrix, for in-
stance, MI defined by (21). In the case considered, the
absolute values of the diagonal elements and the differences
are much greater than the off-diagonal ones (the equal-
ity of the third and fourth diagonal elements µ in MI is
compensated by off-diagonal zero). The diagonalyzing ma-
trix has a similar structure, i.e. the input parameters δk
in (B.4) are small, δk� 1 and ak 
 1. So, due to the small-
ness of parameters δk ∼MZ/Ma, where a = 1, 2, one can
easily solve the system of equations (B.4) approximately.
The functions aα, rk and αk are determined from (B.4),
the input parameters δk and φk are defined by the condi-
tions (UTI MIUI)ik = 0, i > k. Hence, the diagonal elem-
ents (UTI MIUI)kk =mk give the masses in terms of known
quantities.
Finally, we have done the calculations up to the second

order ∼M2Z/M
2
a (or M

2
Z/µ

2) inclusively and get the ex-
pressions for the elements of the diagonalizingmatrix (B.3)
(the hierarchy ofMa and µ is arbitrary). Such an approxi-
mation is reasonable for calculations within a wide class of
split SUSY models.
The input parameters are

δ1e
−iφ1 =

M2Z sin 2θW
2(M22 −µ

2)

M2+µ sin2β

M1−M2
,

δ2e
−iφ2 = i

m1

M1+µ
, δ3e

−iφ3 =−
m2

M1−µ
,

δ4e
−iφ4 =−i

m3

M2+µ
, δ5e

−iφ5 =
m4

M2−µ
,

δ6e
−iφ6 =−

i

2µ

(
m1m2

M1−µ
+
m3m4

M2−µ

)
. (B.5)
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The diagonal elements aβ are

a1 = 1−
1

2

[
m21

(M1+µ)2
+

m22
(M1−µ)2

]
,

a2 = 1−
1

2

[
m23

(M2+µ)2
+

m24
(M2−µ)2

]
,

a3 = 1−
1

2

[
m21

(M1+µ)2
+

m23
(M2+µ)2

]
,

a4 = 1−
1

2

[
m22

(M1−µ)2
+

m24
(M2−µ)2

]
. (B.6)

The off-diagonal elements are

r1e
iα1 =

m1m3

(M1+µ)(M2+µ)
+

m2m4

(M1−µ)(M2−µ)

−
M2Z sin 2θW(M2+µ sin2β)

2
(
M22 −µ

2
)
(M1−M2)

,

r2e
iα2 =

im1
M1+µ

, r3e
iα3 =

m2

M1−µ
,

r4e
iα4 =−

im3
M2+µ

, r5e
iα5 =−

m4

M2−µ
,

r6e
iα6 =

m1m2

M21 −µ
2
+
m3m4

M22 −µ
2
−
i

2µ

(
m1m2

M1−µ
+
m3m4

M2−µ

)
.

(B.7)

In (B.5)–(B.7) we give the zero value to the free pa-
rameter δ06 arising in the first order. It was checked in the
first approximation that the existence of the free parame-
ter δ06 leads to the phase redefinition of the fields χ3 and χ4.
Having applied (B.5)–(B.7), we obtain expressions for the
neutralino masses (31):

(
UTI MIUI

)
kk
=mk , (B.8)

which are positive. We have checked also the unitary condi-
tionU+I UI = 1.
The structure of the neutralino chiral fields results from

the transformations

φL =UχL , φR = (φL)
C =U∗χR ,

χL =U
−1φL =U

+φL , χR = (χL)
C =UTφR ,

(B.9)

where U = U2 ·UI, U2 is defined by (4) and (φ)T =
(B,W 3,H01 ,H

0
2 ).

To illustrate the relation between the initial and phys-
ical fields we give transformations in the first order of
mixing:

BL ≈ χ1L+
im1
M1+µ

χ3L−
m2

M1−µ
χ4L ,

W 3L ≈ χ2L−
im3
M2+µ

χ3L+
m4

M2−µ
χ4L ,

H01L ≈
i
√
2

(
m1

M1+µ
+
m2

M1−µ

)
χ1L

−
i
√
2

(
m3

M2+µ
+
m4

M2−µ

)
χ2L+

1
√
2
χ3L+

i
√
2
χ4L ,

H02L ≈
i
√
2

(
m1

M1+µ
−
m2

M1−µ

)
χ1L

−
i
√
2

(
m3

M2+µ
−
m4

M2−µ

)
χ2L+

1
√
2
χ3L−

i
√
2
χ4L .

(B.10)

Transformation of the R-component can easily be found
from the relation χR = (χL)

C. Inverse transformations il-
lustrate the neutralino structure:

χ1L ≈BL−
i
√
2

(
m1

M1+µ
+
m2

M1−µ

)
H01L

−
i
√
2

(
m1

M1+µ
−
m2

M1−µ

)
H02L ,

χ2L ≈W
3
L +

i
√
2

(
m3

M2+µ
+
m4

M2−µ

)
H01L

+
i
√
2

(
m3

M2+µ
−
m4

M2−µ

)
H02L ,

χ3L ≈−
im1
M1+µ

BL+
im3
M2+µ

W 3L +
1
√
2
H01L+

1
√
2
H02L ,

χ4L ≈−
m2

M1−µ
BL+

m4

M2−µ
W 3L −

i
√
2
H01L+

i
√
2
H02L .

(B.11)

The transformation of the non-chiral Majorana field χ =
χL+χR is

φ= (ReU− iγ5 ImU)χ , χ=
(
ReUT+ iγ5 ImU

T
)
φ .

(B.12)

In the first order of mixing from (B.12) it follows that

B ≈ χ1−
im1
M1+µ

γ5χ3−
m2

M1−µ
χ4 ,

W 3 ≈ χ2+
im3
M2+µ

γ5χ3+
m4

M2−µ
χ4 ,

H01 ≈−
i
√
2
(
m1

M1+µ
+
m2

M1−µ
)γ5χ1

+
i
√
2

(
m3

M2+µ
+
m4

M2−µ

)
γ5χ2+

1
√
2
χ3−

i
√
2
γ5χ4 ,

H02 ≈−
i
√
2

(
m1

M1+µ
−
m2

M1−µ

)
γ5χ1

+
i
√
2

(
m3

M2+µ
−
m4

M2−µ

)
γ5χ2+

1
√
2
χ3+

i
√
2
γ5χ4 .

(B.13)

The structure of non-chiral neutralino states is

χ1 ≈B+
i
√
2

(
m1

M1+µ
+
m2

M1−µ

)
γ5H

0
1

+
i
√
2

(
m1

M1+µ
−
m2

M1−µ

)
γ5H

0
2 ,

χ2 ≈W
3−

i
√
2

(
m3

M2+µ
+
m4

M2−µ

)
γ5H

0
1

−
i
√
2

(
m3

M2+µ
−
m4

M2−µ

)
γ5H

0
2 ,
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χ3 ≈+
im1
M1+µ

γ5B−
im3
M2+µ

W 3+
1
√
2
H01 +

1
√
2
H02 ,

χ4 ≈−
m2

M1−µ
B+

m4

M2−µ
W 3+

i
√
2
γ5H

0
1 −

i
√
2
γ5H

0
2 .

(B.14)

Thus, the imaginary part of the transformations contains
the factor corresponding to the redefinition χ′ = iγ5χ in
the intermediate diagonalization procedure. By direct cal-
culation (up to the second order) it was checked that the di-
agonalization of the real matrixM′I with redefinition of the
final field with negative mass gives the same results as in
our case with δ06 = 0. Note that our formulae (B.10)–(B.14)
coincide with the corresponding ones from [12] if we rede-
fine the neutralino state with negative mass as χ→ iγ5χ.
Now we generalize the method of diagonalization for

the case of a mass matrix with complex parameters
M1e

iψ1 ,M2e
iψ2 and µeiψµ . Then we have to extend (B.3),

introducing additional phase parameters according to
aβ→ aβeiξk . The functions aβ , rk and αk are determined in
terms of the input parameters δk, φk and ξβ by the unitary
conditionU+U= 1. We represent them in the form

a1 =
(
1− δ21− δ

2
2− δ

2
3

)1/2
, a2 =

(
1− δ21− δ

2
4− r

2
5

)1/2
,

a3 =
(
1− δ22− r

2
4− r

2
6

)1/2
, a4 =

(
1− r23− r

2
5− r

2
6

)1/2
,

a1r1e
i(α1+ξ1)+a2δ1e

i(φ1−ξ2)

+ δ2δ4e
i(φ2−φ4)+ δ3δ5e

i(φ3−φ5) = 0 ,

a1r2e
i(α2+ξ1)+ δ1r4e

i(α4+φ1)

+a3δ2e
i(φ2−ξ3)+ δ3δ6e

i(φ3−φ6) = 0 ,

a1r3e
i(α3+ξ1)+ δ1r5e

i(α5+φ1)

+ δ2r6e
i(φ2+α6)+a4δ3e

i(φ3−ξ4) = 0 ,

r1r2e
i(α2−α1)+a2r4e

i(α4+ξ2)

+a3δ4e
i(φ4−ξ3)+ δ5δ6e

i(φ5−φ6) = 0 ,

r1r3e
i(α3−α1)+a2r5e

i(α5+ξ2)

+ δ4r6e
i(φ4+α6)+a4δ5e

i(φ5−ξ4) = 0 ,

r2r3e
i(α3−α2)+ r4r5e

i(α5−α4)

+a3r6e
i(α6+ξ2)+a4δ6e

i(φ6−ξ4) = 0 . (B.15)

The set of input parameters δk, φk and ξβ is deter-
mined in terms of the mass matrix elements utilizing
the diagonalization conditions (UTMU)ik = 0, i �= k and
Im(UTMU)ii = 0.
In the first approximation from the second condition we

get ξ1 = ψ1/2, ξ2 = ψ2/2 and ξ3 = ξ4 =ψµ/2. From the first
condition in the same approximation we get

δ1 = 0 or φ1 = ψ1/2 , M1 =M2 ;

δ2 =
−m1
M21 −µ

2

[
M21 +µ

2−2µM1 cos(ψ1+ψµ)
]1/2
,

tan

(
φ2−

ψ1

2

)
=−
M1−µ

M1+µ
cot

(
ψ1+ψµ
2

)
;

δ3 =
−m2
M21 −µ

2

[
M21 +µ

2+2µM1 cos(ψ1+ψµ)
]1/2
,

tan

(
φ3−

ψ1

2

)
=
M1−µ

M1+µ
tan

(
ψ1+ψµ
2

)
;

δ4 =
m3

M22 −µ
2

[
M22 +µ

2−2µM2 cos(ψ2+ψµ)
]1/2
,

tan

(
φ4−

ψ2

2

)
=−
M2−µ

M2+µ
cot

(
ψ2+ψµ
2

)
;

δ5 =
m4

M22 −µ
2

[
M22 +µ

2+2µM2 cos(ψ2+ψµ)
]1/2
,

tan

(
φ5−

ψ2

2

)
=
M2−µ

M2+µ
tan

(
ψ2+ψµ
2

)
;

δ6 = 0 or φ6 = (ψ2+ψµ)/4 . (B.16)

All expressions for the input phases can be represented as
explicit functions, for example

φ2 =
ψ1

2
−arctan

(
M1−µ

M1+µ
cot

(
ψ1+ψµ
2

))
. (B.17)

From (B.16) one can see that taking account of the com-
plex degrees of freedom in the mass matrix complicates
the calculations. However, the perturbation scheme of the
method is retained and can easily be formalized. It has to
be noted also that we use the same number of phases as in
the general method [12], and the question of optimization
of this number for a special kind of mass matrix is practi-
cally important.
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